logo

Hitta maximal längd ormsekvens

Med tanke på ett rutnät med siffror, hitta maximal längd ormsekvens och skriv ut den. Om flera ormsekvenser finns med maximal längd, skriv ut någon av dem.

En ormsekvens består av angränsande siffror i rutnätet så att för varje nummer är antalet till höger eller numret under +1 eller -1 dess värde. Om du till exempel är på plats (x y) i rutnätet kan du antingen flytta höger, dvs (x y+1) om det numret är ± 1 eller flytta ner, dvs (x+1 y) om det antalet är ± 1.



For example   9   6 5 2    8 7 6 5    7 3 1   6    1 1 1   7   In above grid the longest snake sequence is: (9 8 7 6 5 6 7)

Nedan visar figuren alla möjliga vägar:

snakessemequens' title=

Vi rekommenderar dig starkt att minimera din webbläsare och prova detta själv först.



Tanken är att använda dynamisk programmering. För varje cell i matrisen håller vi maximal längd på en orm som slutar i nuvarande cell. Den maximala längd ormsekvensen har maximalt värde. Det maximala värdet cell kommer att motsvara ormens svans. För att skriva ut ormen måste vi backtracka från svansen hela vägen tillbaka till Snakes huvud.

Let   T[i][i]   represent maximum length of a snake which ends at cell (i j) then for given matrix M the DP relation is defined as T[0][0] = 0  T[i][j] = max(T[i][j] T[i][j - 1] + 1) if M[i][j] = M[i][j - 1] ± 1  T[i][j] = max(T[i][j] T[i - 1][j] + 1) if M[i][j] = M[i - 1][j] ± 1

Nedan är implementeringen av idén 

C++
// C++ program to find maximum length // Snake sequence and print it #include    using namespace std; #define M 4 #define N 4 struct Point {  int x y; }; // Function to find maximum length Snake sequence path // (i j) corresponds to tail of the snake list<Point> findPath(int grid[M][N] int mat[M][N]  int i int j) {  list<Point> path;  Point pt = {i j};  path.push_front(pt);  while (grid[i][j] != 0)  {  if (i > 0 &&  grid[i][j] - 1 == grid[i - 1][j])  {  pt = {i - 1 j};  path.push_front(pt);  i--;  }  else if (j > 0 &&  grid[i][j] - 1 == grid[i][j - 1])  {  pt = {i j - 1};  path.push_front(pt);  j--;  }  }  return path; } // Function to find maximum length Snake sequence void findSnakeSequence(int mat[M][N]) {  // table to store results of subproblems  int lookup[M][N];  // initialize by 0  memset(lookup 0 sizeof lookup);  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++)  {  for (int j = 0; j < N; j++)  {  // do except for (0 0) cell  if (i || j)  {  // look above  if (i > 0 &&  abs(mat[i - 1][j] - mat[i][j]) == 1)  {  lookup[i][j] = max(lookup[i][j]  lookup[i - 1][j] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i max_col = j;  }  }  // look left  if (j > 0 &&  abs(mat[i][j - 1] - mat[i][j]) == 1)  {  lookup[i][j] = max(lookup[i][j]  lookup[i][j - 1] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i max_col = j;  }  }  }  }  }  cout << 'Maximum length of Snake sequence is: '  << max_len << endl;  // find maximum length Snake sequence path  list<Point> path = findPath(lookup mat max_row  max_col);  cout << 'Snake sequence is:';  for (auto it = path.begin(); it != path.end(); it++)  cout << endl << mat[it->x][it->y] << ' ('  << it->x << ' ' << it->y << ')' ; } // Driver code int main() {  int mat[M][N] =  {  {9 6 5 2}  {8 7 6 5}  {7 3 1 6}  {1 1 1 7}  };  findSnakeSequence(mat);  return 0; } 
Java
// Java program to find maximum length // Snake sequence and print it import java.util.*; class GFG  { static int M = 4; static int N = 4; static class Point {  int x y;  public Point(int x int y)   {  this.x = x;  this.y = y;  } }; // Function to find maximum length Snake sequence path // (i j) corresponds to tail of the snake static List<Point> findPath(int grid[][]   int mat[][]   int i int j) {  List<Point> path = new LinkedList<>();  Point pt = new Point(i j);  path.add(0 pt);  while (grid[i][j] != 0)  {  if (i > 0 &&  grid[i][j] - 1 == grid[i - 1][j])  {  pt = new Point(i - 1 j);  path.add(0 pt);  i--;  }  else if (j > 0 && grid[i][j] - 1 ==   grid[i][j - 1])  {  pt = new Point(i j - 1);  path.add(0 pt);  j--;  }  }  return path; } // Function to find maximum length Snake sequence static void findSnakeSequence(int mat[][]) {  // table to store results of subproblems  int [][]lookup = new int[M][N];  // initialize by 0  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++)  {  for (int j = 0; j < N; j++)  {  // do except for (0 0) cell  if (i != 0 || j != 0)  {  // look above  if (i > 0 &&  Math.abs(mat[i - 1][j] -   mat[i][j]) == 1)  {  lookup[i][j] = Math.max(lookup[i][j]  lookup[i - 1][j] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i; max_col = j;  }  }  // look left  if (j > 0 &&  Math.abs(mat[i][j - 1] -   mat[i][j]) == 1)  {  lookup[i][j] = Math.max(lookup[i][j]  lookup[i][j - 1] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i; max_col = j;  }  }  }  }  }  System.out.print('Maximum length of Snake ' +   'sequence is: ' + max_len + 'n');  // find maximum length Snake sequence path  List<Point> path = findPath(lookup mat max_row  max_col);  System.out.print('Snake sequence is:');  for (Point it : path)  System.out.print('n' + mat[it.x][it.y] + ' (' +   it.x + ' ' + it.y + ')'); } // Driver code public static void main(String[] args) {  int mat[][] = {{9 6 5 2}  {8 7 6 5}  {7 3 1 6}  {1 1 1 7}};  findSnakeSequence(mat); } } // This code is contributed by 29AjayKumar 
C#
// C# program to find maximum length // Snake sequence and print it using System; using System.Collections.Generic; class GFG {  static int M = 4;  static int N = 4;  public class Point {  public int x y;  public Point(int x int y)  {  this.x = x;  this.y = y;  }  };  // Function to find maximum length Snake sequence path  // (i j) corresponds to tail of the snake  static List<Point> findPath(int[ ] grid int[ ] mat  int i int j)  {  List<Point> path = new List<Point>();  Point pt = new Point(i j);  path.Insert(0 pt);  while (grid[i j] != 0) {  if (i > 0 && grid[i j] - 1 == grid[i - 1 j]) {  pt = new Point(i - 1 j);  path.Insert(0 pt);  i--;  }  else if (j > 0  && grid[i j] - 1 == grid[i j - 1]) {  pt = new Point(i j - 1);  path.Insert(0 pt);  j--;  }  }  return path;  }  // Function to find maximum length Snake sequence  static void findSnakeSequence(int[ ] mat)  {  // table to store results of subproblems  int[ ] lookup = new int[M N];  // initialize by 0  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++) {  for (int j = 0; j < N; j++) {  // do except for (0 0) cell  if (i != 0 || j != 0) {  // look above  if (i > 0  && Math.Abs(mat[i - 1 j]  - mat[i j])  == 1) {  lookup[i j] = Math.Max(  lookup[i j]  lookup[i - 1 j] + 1);  if (max_len < lookup[i j]) {  max_len = lookup[i j];  max_row = i;  max_col = j;  }  }  // look left  if (j > 0  && Math.Abs(mat[i j - 1]  - mat[i j])  == 1) {  lookup[i j] = Math.Max(  lookup[i j]  lookup[i j - 1] + 1);  if (max_len < lookup[i j]) {  max_len = lookup[i j];  max_row = i;  max_col = j;  }  }  }  }  }  Console.Write('Maximum length of Snake '  + 'sequence is: ' + max_len + 'n');  // find maximum length Snake sequence path  List<Point> path  = findPath(lookup mat max_row max_col);  Console.Write('Snake sequence is:');  foreach(Point it in path)  Console.Write('n' + mat[it.x it.y] + ' ('  + it.x + ' ' + it.y + ')');  }  // Driver code  public static void Main(String[] args)  {  int[ ] mat = { { 9 6 5 2 }  { 8 7 6 5 }  { 7 3 1 6 }  { 1 1 1 7 } };  findSnakeSequence(mat);  } } // This code is contributed by Princi Singh 
Python3
def snakesequence(S m n): sequence = {} DP = [[1 for x in range(m+1)] for x in range(n+1)] a b maximum = 0 0 0 position = [0 0] for i in range(0 n+1): for j in range(0 m+1): a b = 0 0 p = 'initial' if(i > 0 and abs(S[i][j] - S[i-1][j]) == 1): a = DP[i-1][j] if(j > 0 and abs(S[i][j] - S[i][j-1]) == 1): b = DP[i][j-1] if a != 0 and a >= b: p = str(i-1) + ' ' + str(j) elif b != 0: p = str(i) + ' ' + str(j-1) q = str(i) + ' ' + str(j) sequence[q] = p DP[i][j] = DP[i][j] + max(a b) if DP[i][j] >= maximum: maximum = DP[i][j] position[0] = i position[1] = j snakeValues = [] snakePositions = [] snakeValues.append(S[position[0]][position[1]]) check = 'found' str_next = str(position[0]) + ' ' + str(position[1]) findingIndices = sequence[str_next].split() while(check == 'found'): if sequence[str_next] == 'initial': snakePositions.insert(0 str_next) check = 'end' continue findingIndices = sequence[str_next].split() g = int(findingIndices[0]) h = int(findingIndices[1]) snakeValues.insert(0 S[g][h]) snake_position = str(g) + ' ' + str(h) snakePositions.insert(0 str_next) str_next = sequence[str_next] return [snakeValues snakePositions] S = [[9 6 5 2] [8 7 6 5] [7 3 1 6] [1 1 10 7]] m = 3 n = 3 seq = snakesequence(S m n) for i in range(len(seq[0])): print(seq[0][i] '' seq[1][i].split()) 
JavaScript
function snakesequence(S m n) {  let sequence = {}  let DP = new Array(n + 1)  for (var i = 0; i <= n; i++)  DP[i] = new Array(m + 1).fill(1)  let a = 0 b = 0 maximum = 0  let position = [0 0]  for (var i = 0; i <= n; i++)  {  for (var j = 0; j <= m; j++)   {  a = 0  b = 0  let p = 'initial'  if(i > 0 && Math.abs(S[i][j] - S[i-1][j]) == 1)  a = DP[i-1][j]  if(j > 0 && Math.abs(S[i][j] - S[i][j-1]) == 1)  b = DP[i][j-1]  if (a != 0 && a >= b)  p = String(i-1) + ' ' + String(j)  else if (b != 0)  p = String(i) + ' ' + String(j-1)  let q = String(i) + ' ' + String(j)  sequence[q] = p  DP[i][j] = DP[i][j] + Math.max(a b)  if (DP[i][j] >= maximum)  {  maximum = DP[i][j]  position[0] = i  position[1] = j  }  }  }  let snakeValues = []  let snakePositions = []  snakeValues.push(S[position[0]][position[1]])  let check = 'found'  let String_next = String(position[0]) + ' ' + String(position[1])  let findingIndices = sequence[String_next].split(' ')  while(check == 'found')  {  if (sequence[String_next] == 'initial')  {  snakePositions.unshift(String_next)  check = 'end'  continue  }  findingIndices = sequence[String_next].split(' ')  let g = parseInt(findingIndices[0])  let h = parseInt(findingIndices[1])  snakeValues.unshift(S[g][h])  let snake_position = String(g) + ' ' + String(h)  snakePositions.unshift(String_next)  String_next = sequence[String_next]  }  return [snakeValues snakePositions] } // Driver Code  let S = [[9 6 5 2]  [8 7 6 5]  [7 3 1 6]  [1 1 10 7]] let m = 3 let n = 3 let seq = snakesequence(S m n) for (var i = 0; i < seq[0].length; i++)   console.log(seq[0][i] + '' seq[1][i].split(' ')) 

Produktion
Maximum length of Snake sequence is: 6 Snake sequence is: 9 (0 0) 8 (1 0) 7 (1 1) 6 (1 2) 5 (1 3) 6 (2 3) 7 (3 3)

Tidskomplexiteten för ovanstående lösning är O (m*n). Hjälputrymme som används av ovanstående lösning är O (m*n). Om vi ​​inte är skyldiga att skriva ut kan ormutrymmet reduceras ytterligare till O (n) eftersom vi bara använder resultatet från sista raden.