Givet en array arr[0..N-1]. Följande operationer måste utföras.
- uppdatera(l r val) : Lägg till 'val' till alla element i arrayen från [l r].
- getRangeSum(l r) : Hitta summan av alla element i matrisen från [l r].
Initialt är alla element i arrayen 0. Frågor kan vara i vilken ordning som helst, dvs det kan finnas många uppdateringar före intervallsumman.
Exempel:
Input: N = 5 // {0 0 0 0 0}
Frågor: uppdatering: l = 0 r = 4 val = 2
uppdatering: l = 3 r = 4 val = 3
getRangeSum : l = 2 r = 4Produktion: Summan av elementen i området [2 4] är 12
Förklaring: Array efter första uppdateringen blir {2 2 2 2 2}
Array efter andra uppdateringen blir {2 2 2 5 5}
Naivt förhållningssätt: Följ idén nedan för att lösa problemet:
I den föregående inlägg vi diskuterade intervalluppdateringar och punktfrågor med hjälp av BIT.
rangeUpdate(l r val) : Vi lägger till 'val' till elementet vid index 'l'. Vi subtraherar 'val' från elementet vid index 'r+1'.
getElement(index) [eller getSum()]: Vi returnerar summan av element från 0 till index som snabbt kan erhållas med BIT.
Vi kan beräkna rangeSum() med hjälp av getSum()-frågor.
rangeSum(l r) = getSum(r) - getSum(l-1)java lägg till strängEn enkel lösning är att använda de lösningar som diskuteras i föregående inlägg . Frågan om intervalluppdatering är densamma. Intervallsummefråga kan uppnås genom att göra en get-fråga för alla element i intervallet.
Effektivt tillvägagångssätt: Följ idén nedan för att lösa problemet:
Vi får intervallsummor med prefixsummor. Hur säkerställer man att uppdateringen görs på ett sätt så att prefixsumma kan göras snabbt? Tänk på en situation där prefixsumma [0 k] (där 0<= k < n) is needed after range update on the range [l r]. Three cases arise as k can possibly lie in 3 regions.
- Fall 1 : 0< k < l
- Uppdateringsfrågan påverkar inte summafrågan.
- Fall 2 :l<= k <= r
- Tänk på ett exempel: Lägg till 2 till intervallet [2 4] den resulterande arrayen blir: 0 0 2 2 2
Om k = 3 Summan från [0 k] = 4Hur får man det här resultatet?
Lägg bara till valet från lthindex till kthindex. Summan ökas med 'val*(k) - val*(l-1)' efter uppdateringsfrågan.
- Fall 3 : k > r
- I det här fallet måste vi lägga till 'val' från lthindex till rthindex. Summan ökas med 'val*r – val*(l-1)' på grund av en uppdateringsfråga.
Observationer:
Fall 1: är enkelt eftersom summan skulle förbli densamma som den var före uppdateringen.
Fall 2: Summan ökades med val*k - val*(l-1). Vi kan hitta 'val' det liknar att hitta i:etthelement i intervalluppdatering och punktfråga artikel . Så vi upprätthåller en BIT för Range Update och Point Queries. Denna BIT kommer att vara till hjälp för att hitta värdet på kthindex. Nu beräknas val * k hur man hanterar extra term val*(l-1)?
För att hantera denna extra term underhåller vi ytterligare en BIT (BIT2). Uppdatera val * (l-1) vid lthindex så när getSum-frågan utförs på BIT2 kommer resultatet att ge val*(l-1).
Fall 3: Summan i fall 3 ökades med 'val*r - val *(l-1)' värdet av denna term kan erhållas med BIT2. Istället för att addera subtraherar vi 'val*(l-1) - val*r' eftersom vi kan få detta värde från BIT2 genom att addera val*(l-1) som vi gjorde i fall 2 och subtrahera val*r i varje uppdateringsoperation.
oändlig loop
Uppdatera fråga
Uppdatering (BITree1 l val)
Uppdatering(BITree1 r+1 -val)
UpdateBIT2(BITree2 l val*(l-1))
UpdateBIT2(BITree2 r+1 -val*r)Räckvidd Summa
getSum(BITTree1 k) *k) - getSum(BITTree2 k)
Följ stegen nedan för att lösa problemet:
- Skapa de två binära indexträden med den givna funktionen constructBITree()
- För att hitta summan i ett givet område anropa funktionen rangeSum() med parametrar som det givna området och binärt indexerade träd
- Anropa en funktionssumma som returnerar en summa i intervallet [0 X]
- Returnera summa(R) - summa(L-1)
- Inuti denna funktion anropa funktionen getSum() som returnerar summan av arrayen från [0 X]
- Returnera getSum(Träd1 x) * x - getSum(träd2 x)
- Inuti getSum()-funktionen skapa en heltalssumma lika med noll och öka indexet med 1
- Medan indexet är större än noll, öka summan med träd[index]
- Minska index med (index & (-index)) för att flytta indexet till den överordnade noden i trädet
- Retursumma
- Skriv ut summan i det givna intervallet
Nedan är implementeringen av ovanstående tillvägagångssätt:
C++// C++ program to demonstrate Range Update // and Range Queries using BIT #include using namespace std; // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] int getSum(int BITree[] int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. void updateBIT(int BITree[] int n int index int val) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] int sum(int x int BITTree1[] int BITTree2[]) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } void updateRange(int BITTree1[] int BITTree2[] int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } int rangeSum(int l int r int BITTree1[] int BITTree2[]) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } int* constructBITree(int n) { // Create and initialize BITree[] as 0 int* BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver code int main() { int n = 5; // Construct two BIT int *BITTree1 *BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2 r = 4 val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1 r = 4; cout << 'Sum of elements from [' << l << '' << r << '] is '; cout << rangeSum(l r BITTree1 BITTree2) << 'n'; return 0; }
Java // Java program to demonstrate Range Update // and Range Queries using BIT import java.util.*; class GFG { // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] static int getSum(int BITree[] int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in // arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. static void updateBIT(int BITree[] int n int index int val) { // index in BITree[] is 1 more than the index in // arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] static int sum(int x int BITTree1[] int BITTree2[]) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } static void updateRange(int BITTree1[] int BITTree2[] int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } static int rangeSum(int l int r int BITTree1[] int BITTree2[]) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } static int[] constructBITree(int n) { // Create and initialize BITree[] as 0 int[] BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Program to test above function public static void main(String[] args) { int n = 5; // Contwo BIT int[] BITTree1; int[] BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2; r = 4; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1; r = 4; System.out.print('Sum of elements from [' + l + '' + r + '] is '); System.out.print(rangeSum(l r BITTree1 BITTree2) + 'n'); } } // This code is contributed by 29AjayKumar
Python3 # Python3 program to demonstrate Range Update # and Range Queries using BIT # Returns sum of arr[0..index]. This function assumes # that the array is preprocessed and partial sums of # array elements are stored in BITree[] def getSum(BITree: list index: int) -> int: summ = 0 # Initialize result # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse ancestors of BITree[index] while index > 0: # Add current element of BITree to sum summ += BITree[index] # Move index to parent node in getSum View index -= index & (-index) return summ # Updates a node in Binary Index Tree (BITree) at given # index in BITree. The given value 'val' is added to # BITree[i] and all of its ancestors in tree. def updateBit(BITTree: list n: int index: int val: int) -> None: # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse all ancestors and add 'val' while index <= n: # Add 'val' to current node of BI Tree BITTree[index] += val # Update index to that of parent in update View index += index & (-index) # Returns the sum of array from [0 x] def summation(x: int BITTree1: list BITTree2: list) -> int: return (getSum(BITTree1 x) * x) - getSum(BITTree2 x) def updateRange(BITTree1: list BITTree2: list n: int val: int l: int r: int) -> None: # Update Both the Binary Index Trees # As discussed in the article # Update BIT1 updateBit(BITTree1 n l val) updateBit(BITTree1 n r + 1 -val) # Update BIT2 updateBit(BITTree2 n l val * (l - 1)) updateBit(BITTree2 n r + 1 -val * r) def rangeSum(l: int r: int BITTree1: list BITTree2: list) -> int: # Find sum from [0r] then subtract sum # from [0l-1] in order to find sum from # [lr] return summation(r BITTree1 BITTree2) - summation( l - 1 BITTree1 BITTree2) # Driver Code if __name__ == '__main__': n = 5 # BIT1 to get element at any index # in the array BITTree1 = [0] * (n + 1) # BIT 2 maintains the extra term # which needs to be subtracted BITTree2 = [0] * (n + 1) # Add 5 to all the elements from [04] l = 0 r = 4 val = 5 updateRange(BITTree1 BITTree2 n val l r) # Add 10 to all the elements from [24] l = 2 r = 4 val = 10 updateRange(BITTree1 BITTree2 n val l r) # Find sum of all the elements from # [14] l = 1 r = 4 print('Sum of elements from [%d%d] is %d' % (l r rangeSum(l r BITTree1 BITTree2))) # This code is contributed by # sanjeev2552
C# // C# program to demonstrate Range Update // and Range Queries using BIT using System; class GFG { // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] static int getSum(int[] BITree int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than // the index in []arr index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. static void updateBIT(int[] BITree int n int index int val) { // index in BITree[] is 1 more than // the index in []arr index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of // parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] static int sum(int x int[] BITTree1 int[] BITTree2) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } static void updateRange(int[] BITTree1 int[] BITTree2 int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } static int rangeSum(int l int r int[] BITTree1 int[] BITTree2) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } static int[] constructBITree(int n) { // Create and initialize BITree[] as 0 int[] BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Code public static void Main(String[] args) { int n = 5; // Contwo BIT int[] BITTree1; int[] BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2; r = 4; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1; r = 4; Console.Write('Sum of elements from [' + l + '' + r + '] is '); Console.Write(rangeSum(l r BITTree1 BITTree2) + 'n'); } } // This code is contributed by 29AjayKumar
JavaScript <script> // JavaScript program to demonstrate Range Update // and Range Queries using BIT // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] function getSum(BITreeindex) { let sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. function updateBIT(BITreenindexval) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] function sum(xBITTree1BITTree2) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } function updateRange(BITTree1BITTree2nvallr) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } function rangeSum(lrBITTree1BITTree2) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } function constructBITree(n) { // Create and initialize BITree[] as 0 let BITree = new Array(n + 1); for (let i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Program to test above function let n = 5; // Contwo BIT let BITTree1; let BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] let l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2 ; r = 4 ; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1 ; r = 4; document.write('Sum of elements from [' + l + '' + r+ '] is '); document.write(rangeSum(l r BITTree1 BITTree2)+ '
'); // This code is contributed by rag2127 </script>
Produktion
Sum of elements from [14] is 50
Tidskomplexitet : O(q * log(N)) där q är antalet frågor.
Hjälputrymme: PÅ)