Med tanke på många högar med mynt som är ordnade intill. Vi måste samla alla dessa mynt i det minsta antalet steg där vi i ett steg kan samla en horisontell linje med mynt eller en vertikal linje av mynt och insamlade mynt ska vara kontinuerliga.
Exempel:
Input : height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on. Output : 4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.
fjäder mvc
Vi kan lösa detta problem med dela och erövra metoden. Vi kan se att det alltid är fördelaktigt att ta bort horisontella linjer underifrån. Anta att vi arbetar med stackar från l index till r index i ett rekursionssteg varje gång vi väljer lägsta höjd ta bort de många horisontella linjerna, varefter stack kommer att delas upp i två delar l till minimum och minimum +1 till r och vi kommer att anropa rekursivt i dessa subarrayer. En annan sak är att vi också kan samla mynt med vertikala linjer, så vi kommer att välja minimum mellan resultatet av rekursiva samtal och (r - l) eftersom med (r - l) vertikala linjer kan vi alltid samla alla mynt.
Eftersom varje gång vi anropar varje subarray och finner minimum av den totala tidskomplexiteten för lösningen kommer att vara O(N2)
C++
// C++ program to find minimum number of // steps to collect stack of coins #include using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() { int height[] = { 2 1 2 5 1 }; int N = sizeof(height) / sizeof(int); cout << minSteps(height N) << endl; return 0; }
Java // Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int height[] int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int height[] int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void main(String[] args) { int height[] = { 2 1 2 5 1 }; int N = height.length; System.out.println(minSteps(height N)); } } // This code is contributed by Arnav Kr. Mandal.
Python 3 # Python 3 program to find # minimum number of steps # to collect stack of coins # recursive method to collect # coins from height array l to # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using # all vertical lines (total r - l) # 2) collecting coins using # lower horizontal lines and # recursively on left and # right segments return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal
C# // C# Code to Collect all coins in // minimum number of steps using System; class GFG { // recursive method to collect coins from // height array l to r with height h already // collected public static int minStepsRecur(int[] height int l int r int h) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to // get minimum height index int m = l; for (int i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.Min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array public static int minSteps(int[] height int N) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ public static void Main() { int[] height = { 2 1 2 5 1 }; int N = height.Length; Console.Write(minSteps(height N)); } } // This code is contributed by nitin mittal
PHP // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> JavaScript <script> // Javascript Code to Collect all coins in // minimum number of steps // recursive method to collect coins from // height array l to r with height h already // collected function minStepsRecur(heightlrh) { // if l is more than r no steps needed if (l >= r) return 0; // loop over heights to get minimum height // index let m = l; for (let i = l; i < r; i++) if (height[i] < height[m]) m = i; /* choose minimum from 1) collecting coins using all vertical lines (total r - l) 2) collecting coins using lower horizontal lines and recursively on left and right segments */ return Math.min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps(heightN) { return minStepsRecur(height 0 N 0); } /* Driver program to test above function */ let height=[2 1 2 5 1 ]; let N = height.length; document.write(minSteps(height N)); // This code is contributed by avanitrachhadiya2155 </script>
Produktion:
4
Tidskomplexitet: Tidskomplexiteten för denna algoritm är O(N^2) där N är antalet element i höjdarrayen.
Utrymmes komplexitet: Rymdkomplexiteten för denna algoritm är O(N) på grund av de rekursiva anrop som görs på höjdmatrisen.