Givet ett a rray arr[] av storlek n uppgiften är att hitta längsta efterföljd sådan att absolut skillnad mellan intilliggande element är 1.
Exempel:
Input: arr[] = [10 9 4 5 4 8 6]
Produktion: 3
Förklaring: De tre möjliga undersekvenserna av längd 3 är [10 9 8] [4 5 4] och [4 5 6] där intilliggande element har en absolut skillnad på 1. Ingen giltig undersekvens av större längd kunde bildas.
Input: arr[] = [1 2 3 4 5]
Produktion: 5
Förklaring: Alla element kan inkluderas i den giltiga undersekvensen.
Använda Rekursion - O(2^n) Tid och O(n) Mellanrum
C++För den rekursivt förhållningssätt vi kommer att överväga två fall vid varje steg:
- Om elementet uppfyller villkoret (den absolut skillnad mellan angränsande element är 1) vi omfatta det i efterföljande och gå vidare till nästa element.
- annars vi hoppa de nuvarande element och gå vidare till nästa.
Matematiskt återfallsförhållande kommer att se ut som följande:
inkapsling java
- longestSubseq(arr idx prev) = max(longestSubseq(arr idx + 1 prev) 1 + longestSubseq(arr idx + 1 idx))
Basfodral:
- När idx == arr.size() vi har nått slutet av arrayen så returnera 0 (eftersom inga fler element kan inkluderas).
// C++ program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion. #include using namespace std; int subseqHelper(int idx int prev vector<int>& arr) { // Base case: if index reaches the end of the array if (idx == arr.size()) { return 0; } // Skip the current element and move to the next index int noTake = subseqHelper(idx + 1 prev arr); // Take the current element if the condition is met int take = 0; if (prev == -1 || abs(arr[idx] - arr[prev]) == 1) { take = 1 + subseqHelper(idx + 1 idx arr); } // Return the maximum of the two options return max(take noTake); } // Function to find the longest subsequence int longestSubseq(vector<int>& arr) { // Start recursion from index 0 // with no previous element return subseqHelper(0 -1 arr); } int main() { vector<int> arr = {10 9 4 5 4 8 6}; cout << longestSubseq(arr); return 0; }
Java // Java program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion. import java.util.ArrayList; class GfG { // Helper function to recursively find the subsequence static int subseqHelper(int idx int prev ArrayList<Integer> arr) { // Base case: if index reaches the end of the array if (idx == arr.size()) { return 0; } // Skip the current element and move to the next index int noTake = subseqHelper(idx + 1 prev arr); // Take the current element if the condition is met int take = 0; if (prev == -1 || Math.abs(arr.get(idx) - arr.get(prev)) == 1) { take = 1 + subseqHelper(idx + 1 idx arr); } // Return the maximum of the two options return Math.max(take noTake); } // Function to find the longest subsequence static int longestSubseq(ArrayList<Integer> arr) { // Start recursion from index 0 // with no previous element return subseqHelper(0 -1 arr); } public static void main(String[] args) { ArrayList<Integer> arr = new ArrayList<>(); arr.add(10); arr.add(9); arr.add(4); arr.add(5); arr.add(4); arr.add(8); arr.add(6); System.out.println(longestSubseq(arr)); } }
Python # Python program to find the longest subsequence such that # the difference between adjacent elements is one using # recursion. def subseq_helper(idx prev arr): # Base case: if index reaches the end of the array if idx == len(arr): return 0 # Skip the current element and move to the next index no_take = subseq_helper(idx + 1 prev arr) # Take the current element if the condition is met take = 0 if prev == -1 or abs(arr[idx] - arr[prev]) == 1: take = 1 + subseq_helper(idx + 1 idx arr) # Return the maximum of the two options return max(take no_take) def longest_subseq(arr): # Start recursion from index 0 # with no previous element return subseq_helper(0 -1 arr) if __name__ == '__main__': arr = [10 9 4 5 4 8 6] print(longest_subseq(arr))
C# // C# program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion. using System; using System.Collections.Generic; class GfG { // Helper function to recursively find the subsequence static int SubseqHelper(int idx int prev List<int> arr) { // Base case: if index reaches the end of the array if (idx == arr.Count) { return 0; } // Skip the current element and move to the next index int noTake = SubseqHelper(idx + 1 prev arr); // Take the current element if the condition is met int take = 0; if (prev == -1 || Math.Abs(arr[idx] - arr[prev]) == 1) { take = 1 + SubseqHelper(idx + 1 idx arr); } // Return the maximum of the two options return Math.Max(take noTake); } // Function to find the longest subsequence static int LongestSubseq(List<int> arr) { // Start recursion from index 0 // with no previous element return SubseqHelper(0 -1 arr); } static void Main(string[] args) { List<int> arr = new List<int> { 10 9 4 5 4 8 6 }; Console.WriteLine(LongestSubseq(arr)); } }
JavaScript // JavaScript program to find the longest subsequence // such that the difference between adjacent elements // is one using recursion. function subseqHelper(idx prev arr) { // Base case: if index reaches the end of the array if (idx === arr.length) { return 0; } // Skip the current element and move to the next index let noTake = subseqHelper(idx + 1 prev arr); // Take the current element if the condition is met let take = 0; if (prev === -1 || Math.abs(arr[idx] - arr[prev]) === 1) { take = 1 + subseqHelper(idx + 1 idx arr); } // Return the maximum of the two options return Math.max(take noTake); } function longestSubseq(arr) { // Start recursion from index 0 // with no previous element return subseqHelper(0 -1 arr); } const arr = [10 9 4 5 4 8 6]; console.log(longestSubseq(arr));
Produktion
3
Använda Top-Down DP (Memoization ) - O(n^2) Tid och O(n^2) Utrymme
Om vi lägger märke till det noggrant kan vi observera att ovanstående rekursiva lösning har följande två egenskaper av Dynamisk programmering :
1. Optimal understruktur: Lösningen för att hitta den längsta följden så att skillnad mellan intilliggande element kan man härleda sig från de optimala lösningarna av mindre delproblem. Specifikt för någon given idx (nuvarande index) och föregående (föregående index i efterföljden) kan vi uttrycka den rekursiva relationen enligt följande:
- subseqHelper(idx prev) = max(subseqHelper(idx + 1 prev) 1 + subseqHelper(idx + 1 idx))
2. Överlappande delproblem: Vid implementering av en rekursiv tillvägagångssätt för att lösa problemet observerar vi att många delproblem beräknas flera gånger. Till exempel vid datoranvändning subseqHelper(0 -1) för en array arr = [10 9 4 5] delproblemet subseqHelper(2 -1) kan beräknas multipel gånger. För att undvika denna upprepning använder vi memoisering för att lagra resultaten av tidigare beräknade delproblem.
Den rekursiva lösningen innebär två parametrar:
- idx (det aktuella indexet i arrayen).
- föregående (indexet för det senast inkluderade elementet i undersekvensen).
Vi måste spåra båda parametrarna så vi skapar en 2D-array-memo av storlek (n) x (n+1) . Vi initierar 2D-arraymemo med -1 för att indikera att inga delproblem har beräknats ännu. Innan vi beräknar ett resultat kontrollerar vi om värdet på memo[idx][prev+1] är -1. Om det är vi beräknar och lagra resultatet. Annars returnerar vi det lagrade resultatet.
C++// C++ program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion with memoization. #include using namespace std; // Helper function to recursively find the subsequence int subseqHelper(int idx int prev vector<int>& arr vector<vector<int>>& memo) { // Base case: if index reaches the end of the array if (idx == arr.size()) { return 0; } // Check if the result is already computed if (memo[idx][prev + 1] != -1) { return memo[idx][prev + 1]; } // Skip the current element and move to the next index int noTake = subseqHelper(idx + 1 prev arr memo); // Take the current element if the condition is met int take = 0; if (prev == -1 || abs(arr[idx] - arr[prev]) == 1) { take = 1 + subseqHelper(idx + 1 idx arr memo); } // Store the result in the memo table return memo[idx][prev + 1] = max(take noTake); } // Function to find the longest subsequence int longestSubseq(vector<int>& arr) { int n = arr.size(); // Create a memoization table initialized to -1 vector<vector<int>> memo(n vector<int>(n + 1 -1)); // Start recursion from index 0 with no previous element return subseqHelper(0 -1 arr memo); } int main() { // Input array of integers vector<int> arr = {10 9 4 5 4 8 6}; cout << longestSubseq(arr); return 0; }
Java // Java program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion with memoization. import java.util.ArrayList; import java.util.Arrays; class GfG { // Helper function to recursively find the subsequence static int subseqHelper(int idx int prev ArrayList<Integer> arr int[][] memo) { // Base case: if index reaches the end of the array if (idx == arr.size()) { return 0; } // Check if the result is already computed if (memo[idx][prev + 1] != -1) { return memo[idx][prev + 1]; } // Skip the current element and move to the next index int noTake = subseqHelper(idx + 1 prev arr memo); // Take the current element if the condition is met int take = 0; if (prev == -1 || Math.abs(arr.get(idx) - arr.get(prev)) == 1) { take = 1 + subseqHelper(idx + 1 idx arr memo); } // Store the result in the memo table memo[idx][prev + 1] = Math.max(take noTake); // Return the stored result return memo[idx][prev + 1]; } // Function to find the longest subsequence static int longestSubseq(ArrayList<Integer> arr) { int n = arr.size(); // Create a memoization table initialized to -1 int[][] memo = new int[n][n + 1]; for (int[] row : memo) { Arrays.fill(row -1); } // Start recursion from index 0 // with no previous element return subseqHelper(0 -1 arr memo); } public static void main(String[] args) { ArrayList<Integer> arr = new ArrayList<>(); arr.add(10); arr.add(9); arr.add(4); arr.add(5); arr.add(4); arr.add(8); arr.add(6); System.out.println(longestSubseq(arr)); } }
Python # Python program to find the longest subsequence such that # the difference between adjacent elements is one using # recursion with memoization. def subseq_helper(idx prev arr memo): # Base case: if index reaches the end of the array if idx == len(arr): return 0 # Check if the result is already computed if memo[idx][prev + 1] != -1: return memo[idx][prev + 1] # Skip the current element and move to the next index no_take = subseq_helper(idx + 1 prev arr memo) # Take the current element if the condition is met take = 0 if prev == -1 or abs(arr[idx] - arr[prev]) == 1: take = 1 + subseq_helper(idx + 1 idx arr memo) # Store the result in the memo table memo[idx][prev + 1] = max(take no_take) # Return the stored result return memo[idx][prev + 1] def longest_subseq(arr): n = len(arr) # Create a memoization table initialized to -1 memo = [[-1 for _ in range(n + 1)] for _ in range(n)] # Start recursion from index 0 with # no previous element return subseq_helper(0 -1 arr memo) if __name__ == '__main__': arr = [10 9 4 5 4 8 6] print(longest_subseq(arr))
C# // C# program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion with memoization. using System; using System.Collections.Generic; class GfG { // Helper function to recursively find the subsequence static int SubseqHelper(int idx int prev List<int> arr int[] memo) { // Base case: if index reaches the end of the array if (idx == arr.Count) { return 0; } // Check if the result is already computed if (memo[idx prev + 1] != -1) { return memo[idx prev + 1]; } // Skip the current element and move to the next index int noTake = SubseqHelper(idx + 1 prev arr memo); // Take the current element if the condition is met int take = 0; if (prev == -1 || Math.Abs(arr[idx] - arr[prev]) == 1) { take = 1 + SubseqHelper(idx + 1 idx arr memo); } // Store the result in the memoization table memo[idx prev + 1] = Math.Max(take noTake); // Return the stored result return memo[idx prev + 1]; } // Function to find the longest subsequence static int LongestSubseq(List<int> arr) { int n = arr.Count; // Create a memoization table initialized to -1 int[] memo = new int[n n + 1]; for (int i = 0; i < n; i++) { for (int j = 0; j <= n; j++) { memo[i j] = -1; } } // Start recursion from index 0 with no previous element return SubseqHelper(0 -1 arr memo); } static void Main(string[] args) { List<int> arr = new List<int> { 10 9 4 5 4 8 6 }; Console.WriteLine(LongestSubseq(arr)); } }
JavaScript // JavaScript program to find the longest subsequence // such that the difference between adjacent elements // is one using recursion with memoization. function subseqHelper(idx prev arr memo) { // Base case: if index reaches the end of the array if (idx === arr.length) { return 0; } // Check if the result is already computed if (memo[idx][prev + 1] !== -1) { return memo[idx][prev + 1]; } // Skip the current element and move to the next index let noTake = subseqHelper(idx + 1 prev arr memo); // Take the current element if the condition is met let take = 0; if (prev === -1 || Math.abs(arr[idx] - arr[prev]) === 1) { take = 1 + subseqHelper(idx + 1 idx arr memo); } // Store the result in the memoization table memo[idx][prev + 1] = Math.max(take noTake); // Return the stored result return memo[idx][prev + 1]; } function longestSubseq(arr) { let n = arr.length; // Create a memoization table initialized to -1 let memo = Array.from({ length: n } () => Array(n + 1).fill(-1)); // Start recursion from index 0 with no previous element return subseqHelper(0 -1 arr memo); } const arr = [10 9 4 5 4 8 6]; console.log(longestSubseq(arr));
Produktion
3
Använda Bottom-Up DP (Tabulering) - På) Tid och På) Utrymme
Tillvägagångssättet liknar rekursiv metod men istället för att bryta ner problemet rekursivt bygger vi iterativt lösningen i en nedifrån och upp sätt.
Istället för att använda rekursion använder vi en hashmap baserad dynamisk programmeringstabell (dp) för att lagra längder av de längsta följderna. Detta hjälper oss att effektivt beräkna och uppdatera efterföljande längder för alla möjliga värden för arrayelement.
C++Dynamisk programmeringsrelation:
dp[x] representerar längd av den längsta undersekvensen som slutar med elementet x.
För varje element arr[i] i arrayen: If arr[i] + 1 eller arr[i] - 1 finns i dp:
- dp[arr[i]] = 1 + max(dp[arr[i] + 1] dp[arr[i] - 1]);
Det betyder att vi kan förlänga undersekvenserna som slutar med arr[i] + 1 eller arr[i] - 1 av inklusive arr[i].
Annars starta en ny undersekvens:
- dp[arr[i]] = 1;
// C++ program to find the longest subsequence such that // the difference between adjacent elements is one using // Tabulation. #include using namespace std; int longestSubseq(vector<int>& arr) { int n = arr.size(); // Base case: if the array has only // one element if (n == 1) { return 1; } // Map to store the length of the longest subsequence unordered_map<int int> dp; int ans = 1; // Loop through the array to fill the map // with subsequence lengths for (int i = 0; i < n; ++i) { // Check if the current element is adjacent // to another subsequence if (dp.count(arr[i] + 1) > 0 || dp.count(arr[i] - 1) > 0) { dp[arr[i]] = 1 + max(dp[arr[i] + 1] dp[arr[i] - 1]); } else { dp[arr[i]] = 1; } // Update the result with the maximum // subsequence length ans = max(ans dp[arr[i]]); } return ans; } int main() { vector<int> arr = {10 9 4 5 4 8 6}; cout << longestSubseq(arr); return 0; }
Java // Java code to find the longest subsequence such that // the difference between adjacent elements // is one using Tabulation. import java.util.HashMap; import java.util.ArrayList; class GfG { static int longestSubseq(ArrayList<Integer> arr) { int n = arr.size(); // Base case: if the array has only one element if (n == 1) { return 1; } // Map to store the length of the longest subsequence HashMap<Integer Integer> dp = new HashMap<>(); int ans = 1; // Loop through the array to fill the map // with subsequence lengths for (int i = 0; i < n; ++i) { // Check if the current element is adjacent // to another subsequence if (dp.containsKey(arr.get(i) + 1) || dp.containsKey(arr.get(i) - 1)) { dp.put(arr.get(i) 1 + Math.max(dp.getOrDefault(arr.get(i) + 1 0) dp.getOrDefault(arr.get(i) - 1 0))); } else { dp.put(arr.get(i) 1); } // Update the result with the maximum // subsequence length ans = Math.max(ans dp.get(arr.get(i))); } return ans; } public static void main(String[] args) { ArrayList<Integer> arr = new ArrayList<>(); arr.add(10); arr.add(9); arr.add(4); arr.add(5); arr.add(4); arr.add(8); arr.add(6); System.out.println(longestSubseq(arr)); } }
Python # Python code to find the longest subsequence such that # the difference between adjacent elements is # one using Tabulation. def longestSubseq(arr): n = len(arr) # Base case: if the array has only one element if n == 1: return 1 # Dictionary to store the length of the # longest subsequence dp = {} ans = 1 for i in range(n): # Check if the current element is adjacent to # another subsequence if arr[i] + 1 in dp or arr[i] - 1 in dp: dp[arr[i]] = 1 + max(dp.get(arr[i] + 1 0) dp.get(arr[i] - 1 0)) else: dp[arr[i]] = 1 # Update the result with the maximum # subsequence length ans = max(ans dp[arr[i]]) return ans if __name__ == '__main__': arr = [10 9 4 5 4 8 6] print(longestSubseq(arr))
C# // C# code to find the longest subsequence such that // the difference between adjacent elements // is one using Tabulation. using System; using System.Collections.Generic; class GfG { static int longestSubseq(List<int> arr) { int n = arr.Count; // Base case: if the array has only one element if (n == 1) { return 1; } // Map to store the length of the longest subsequence Dictionary<int int> dp = new Dictionary<int int>(); int ans = 1; // Loop through the array to fill the map with // subsequence lengths for (int i = 0; i < n; ++i) { // Check if the current element is adjacent to // another subsequence if (dp.ContainsKey(arr[i] + 1) || dp.ContainsKey(arr[i] - 1)) { dp[arr[i]] = 1 + Math.Max(dp.GetValueOrDefault(arr[i] + 1 0) dp.GetValueOrDefault(arr[i] - 1 0)); } else { dp[arr[i]] = 1; } // Update the result with the maximum // subsequence length ans = Math.Max(ans dp[arr[i]]); } return ans; } static void Main(string[] args) { List<int> arr = new List<int> { 10 9 4 5 4 8 6 }; Console.WriteLine(longestSubseq(arr)); } }
JavaScript // Function to find the longest subsequence such that // the difference between adjacent elements // is one using Tabulation. function longestSubseq(arr) { const n = arr.length; // Base case: if the array has only one element if (n === 1) { return 1; } // Object to store the length of the // longest subsequence let dp = {}; let ans = 1; // Loop through the array to fill the object // with subsequence lengths for (let i = 0; i < n; i++) { // Check if the current element is adjacent to // another subsequence if ((arr[i] + 1) in dp || (arr[i] - 1) in dp) { dp[arr[i]] = 1 + Math.max(dp[arr[i] + 1] || 0 dp[arr[i] - 1] || 0); } else { dp[arr[i]] = 1; } // Update the result with the maximum // subsequence length ans = Math.max(ans dp[arr[i]]); } return ans; } const arr = [10 9 4 5 4 8 6]; console.log(longestSubseq(arr));
Produktion
3Skapa frågesport