logo

Petersons algoritm för ömsesidig uteslutning | Set 2 (CPU -cykler och minnesstaket)

Problem: Med tanke på 2 process I och J måste du skriva ett program som kan garantera ömsesidig uteslutning mellan de två utan ytterligare hårdvarustöd.

Avfall av CPU -klockcykler

I lekmann när en tråd väntade på sin tur slutade den i en lång stund sling som testade villkoret miljoner gånger per sekund och därmed gjorde onödig beräkning. Det finns ett bättre sätt att vänta och det är känt som 'avkastning' .



För att förstå vad det behöver för att gräva djupt in i hur processschemaläggaren fungerar i Linux. Idén som nämns här är en förenklad version av schemaläggaren. Den faktiska implementeringen har massor av komplikationer.

Tänk på följande exempel 
Det finns tre processer P1 P2 och P3. Process P3 är sådan att den har en stund slinga som liknar den i vår kod som inte gör så användbar beräkning och den finns från slingan endast när P2 avslutar sin exekvering. Schemaläggaren sätter dem alla i en rund robinkö. Säg nu klockhastigheten för processorn är 1000000/sek och den tilldelar 100 klockor till varje process i varje iteration. Sedan körs First P1 i 100 klockor (0,0001 sekunder) sedan P2 (0,0001 sekunder) följt av P3 (0,0001 sekunder) nu eftersom det inte finns fler processer som denna cykel upprepas förrän P2 slutar och följs sedan av P3: s exekvering och så småningom dess uppsägning.

Detta är ett fullständigt slöseri med 100 CPU -klockcyklerna. För att undvika detta ger vi ömsesidigt upp CPU -tidsskivan, dvs. utbyte som i huvudsak slutar denna gång skiva och schemaläggaren plockar upp nästa process att köra. Nu testar vi vårt tillstånd en gång då vi ger upp CPU. Med tanke på att vårt test tar 25 klockcykler sparar vi 75% av vår beräkning i en tidsskiva. För att sätta detta grafiskt
 



Petersons algoritm för ömsesidig uteslutning | Set 2 (CPU -cykler och minnesstaket)

Med tanke på processorns klockhastighet som 1MHz är detta mycket sparande!. 
Olika distributioner ger olika funktioner för att uppnå denna funktionalitet. Linux tillhandahåller Sched_yield () .

C
void lock(int self) {  flag[self] = 1;  turn = 1-self;  while (flag[1-self] == 1 &&  turn == 1-self)    // Only change is the addition of  // sched_yield() call  sched_yield(); } 

Minnesstaket.

Koden i tidigare handledning kan ha fungerat på de flesta system men var inte 100% korrekt. Logiken var perfekt men de flesta moderna CPU: er använder optimering av prestanda som kan resultera i utförande utanför ordningen. Denna ombeställning av minnesoperationer (belastningar och butiker) går normalt obemärkt inom en enda tråd av exekvering men kan orsaka oförutsägbart beteende i samtidiga program.
Tänk på detta exempel 



C
 while (f == 0);    // Memory fence required here  print x; 

I exemplet ovan beaktar kompilatorn de två uttalandena som oberoende av varandra och försöker därmed öka kodeffektiviteten genom att ombeställa dem vilket kan leda till problem för samtidiga program. För att undvika detta placerar vi ett minnesstaket för att ge ledtråd till kompilatorn om det möjliga förhållandet mellan uttalandena över barriären.

Så uttalandesordningen  

flagga [själv] = 1; 
turn = 1-self; 
medan (vändvillkorskontroll) 
avkastning(); 
 

Måste vara exakt densamma för att låset ska fungera annars kommer det att hamna i dödläge.

För att säkerställa att dessa kompilatorer ger en instruktion som förhindrar beställning av uttalanden över denna barriär. Vid GCC är det __sync_synchronize () .
Så den modifierade koden blir 
Full implementering i C:

C++
// Filename: peterson_yieldlock_memoryfence.cpp // Use below command to compile: // g++ -pthread peterson_yieldlock_memoryfence.cpp -o peterson_yieldlock_memoryfence #include   #include #include   std::atomic<int> flag[2]; std::atomic<int> turn; const int MAX = 1e9; int ans = 0; void lock_init() {  // Initialize lock by resetting the desire of  // both the threads to acquire the locks.  // And giving turn to one of them.  flag[0] = flag[1] = 0;  turn = 0; } // Executed before entering critical section void lock(int self) {  // Set flag[self] = 1 saying you want  // to acquire lock  flag[self]=1;  // But first give the other thread the  // chance to acquire lock  turn = 1-self;  // Memory fence to prevent the reordering  // of instructions beyond this barrier.  std::atomic_thread_fence(std::memory_order_seq_cst);  // Wait until the other thread loses the  // desire to acquire lock or it is your  // turn to get the lock.  while (flag[1-self]==1 && turn==1-self)  // Yield to avoid wastage of resources.  std::this_thread::yield(); } // Executed after leaving critical section void unlock(int self) {  // You do not desire to acquire lock in future.  // This will allow the other thread to acquire  // the lock.  flag[self]=0; } // A Sample function run by two threads created // in main() void func(int s) {  int i = 0;  int self = s;  std::cout << 'Thread Entered: ' << self << std::endl;  lock(self);  // Critical section (Only one thread  // can enter here at a time)  for (i=0; i<MAX; i++)  ans++;  unlock(self); } // Driver code int main() {   // Initialize the lock   lock_init();  // Create two threads (both run func)  std::thread t1(func 0);  std::thread t2(func 1);  // Wait for the threads to end.  t1.join();  t2.join();  std::cout << 'Actual Count: ' << ans << ' | Expected Count: ' << MAX*2 << std::endl;  return 0; } 
C
// Filename: peterson_yieldlock_memoryfence.c // Use below command to compile: // gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence #include #include #include 'mythreads.h' int flag[2]; int turn; const int MAX = 1e9; int ans = 0; void lock_init() {  // Initialize lock by resetting the desire of  // both the threads to acquire the locks.  // And giving turn to one of them.  flag[0] = flag[1] = 0;  turn = 0; } // Executed before entering critical section void lock(int self) {  // Set flag[self] = 1 saying you want  // to acquire lock  flag[self]=1;  // But first give the other thread the  // chance to acquire lock  turn = 1-self;  // Memory fence to prevent the reordering  // of instructions beyond this barrier.  __sync_synchronize();  // Wait until the other thread loses the  // desire to acquire lock or it is your  // turn to get the lock.  while (flag[1-self]==1 && turn==1-self)  // Yield to avoid wastage of resources.  sched_yield(); } // Executed after leaving critical section void unlock(int self) {  // You do not desire to acquire lock in future.  // This will allow the other thread to acquire  // the lock.  flag[self]=0; } // A Sample function run by two threads created // in main() void* func(void *s) {  int i = 0;  int self = (int *)s;  printf('Thread Entered: %dn'self);  lock(self);  // Critical section (Only one thread  // can enter here at a time)  for (i=0; i<MAX; i++)  ans++;  unlock(self); } // Driver code int main() {   pthread_t p1 p2;  // Initialize the lock   lock_init();  // Create two threads (both run func)  Pthread_create(&p1 NULL func (void*)0);  Pthread_create(&p2 NULL func (void*)1);  // Wait for the threads to end.  Pthread_join(p1 NULL);  Pthread_join(p2 NULL);  printf('Actual Count: %d | Expected Count:'  ' %dn'ansMAX*2);  return 0; } 
Java
import java.util.concurrent.atomic.AtomicInteger; public class PetersonYieldLockMemoryFence {  static AtomicInteger[] flag = new AtomicInteger[2];  static AtomicInteger turn = new AtomicInteger();  static final int MAX = 1000000000;  static int ans = 0;  static void lockInit() {  flag[0] = new AtomicInteger();  flag[1] = new AtomicInteger();  flag[0].set(0);  flag[1].set(0);  turn.set(0);  }  static void lock(int self) {  flag[self].set(1);  turn.set(1 - self);  // Memory fence to prevent the reordering of instructions beyond this barrier.  // In Java volatile variables provide this guarantee implicitly.  // No direct equivalent to atomic_thread_fence is needed.  while (flag[1 - self].get() == 1 && turn.get() == 1 - self)  Thread.yield();  }  static void unlock(int self) {  flag[self].set(0);  }  static void func(int s) {  int i = 0;  int self = s;  System.out.println('Thread Entered: ' + self);  lock(self);  // Critical section (Only one thread can enter here at a time)  for (i = 0; i < MAX; i++)  ans++;  unlock(self);  }  public static void main(String[] args) {  // Initialize the lock  lockInit();  // Create two threads (both run func)  Thread t1 = new Thread(() -> func(0));  Thread t2 = new Thread(() -> func(1));  // Start the threads  t1.start();  t2.start();  try {  // Wait for the threads to end.  t1.join();  t2.join();  } catch (InterruptedException e) {  e.printStackTrace();  }  System.out.println('Actual Count: ' + ans + ' | Expected Count: ' + MAX * 2);  } } 
Python
import threading flag = [0 0] turn = 0 MAX = 10**9 ans = 0 def lock_init(): # This function initializes the lock by resetting the flags and turn. global flag turn flag = [0 0] turn = 0 def lock(self): # This function is executed before entering the critical section. It sets the flag for the current thread and gives the turn to the other thread. global flag turn flag[self] = 1 turn = 1 - self while flag[1-self] == 1 and turn == 1-self: pass def unlock(self): # This function is executed after leaving the critical section. It resets the flag for the current thread. global flag flag[self] = 0 def func(s): # This function is executed by each thread. It locks the critical section increments the shared variable and then unlocks the critical section. global ans self = s print(f'Thread Entered: {self}') lock(self) for _ in range(MAX): ans += 1 unlock(self) def main(): # This is the main function where the threads are created and started. lock_init() t1 = threading.Thread(target=func args=(0)) t2 = threading.Thread(target=func args=(1)) t1.start() t2.start() t1.join() t2.join() print(f'Actual Count: {ans} | Expected Count: {MAX*2}') if __name__ == '__main__': main() 
JavaScript
class PetersonYieldLockMemoryFence {  static flag = [0 0];  static turn = 0;  static MAX = 1000000000;  static ans = 0;  // Function to acquire the lock  static async lock(self) {  PetersonYieldLockMemoryFence.flag[self] = 1;  PetersonYieldLockMemoryFence.turn = 1 - self;  // Asynchronous loop with a small delay to yield  while (PetersonYieldLockMemoryFence.flag[1 - self] == 1 &&  PetersonYieldLockMemoryFence.turn == 1 - self) {  await new Promise(resolve => setTimeout(resolve 0));  }  }  // Function to release the lock  static unlock(self) {  PetersonYieldLockMemoryFence.flag[self] = 0;  }  // Function representing the critical section  static func(s) {  let i = 0;  let self = s;  console.log('Thread Entered: ' + self);    // Lock the critical section  PetersonYieldLockMemoryFence.lock(self).then(() => {  // Critical section (Only one thread can enter here at a time)  for (i = 0; i < PetersonYieldLockMemoryFence.MAX; i++) {  PetersonYieldLockMemoryFence.ans++;  }    // Release the lock  PetersonYieldLockMemoryFence.unlock(self);  });  }  // Main function  static main() {  // Create two threads (both run func)  const t1 = new Thread(() => PetersonYieldLockMemoryFence.func(0));  const t2 = new Thread(() => PetersonYieldLockMemoryFence.func(1));  // Start the threads  t1.start();  t2.start();  // Wait for the threads to end.  setTimeout(() => {  console.log('Actual Count: ' + PetersonYieldLockMemoryFence.ans + ' | Expected Count: ' + PetersonYieldLockMemoryFence.MAX * 2);  } 1000); // Delay for a while to ensure threads finish  } } // Define a simple Thread class for simulation class Thread {  constructor(func) {  this.func = func;  }  start() {  this.func();  } } // Run the main function PetersonYieldLockMemoryFence.main(); 
C++
// mythread.h (A wrapper header file with assert statements) #ifndef __MYTHREADS_h__ #define __MYTHREADS_h__ #include  #include  #include  // Function to lock a pthread mutex void Pthread_mutex_lock(pthread_mutex_t *m) {  int rc = pthread_mutex_lock(m);  assert(rc == 0); // Assert that the mutex was locked successfully }   // Function to unlock a pthread mutex void Pthread_mutex_unlock(pthread_mutex_t *m) {  int rc = pthread_mutex_unlock(m);  assert(rc == 0); // Assert that the mutex was unlocked successfully }   // Function to create a pthread void Pthread_create(pthread_t *thread const pthread_attr_t *attr   void *(*start_routine)(void*) void *arg) {  int rc = pthread_create(thread attr start_routine arg);  assert(rc == 0); // Assert that the thread was created successfully } // Function to join a pthread void Pthread_join(pthread_t thread void **value_ptr) {  int rc = pthread_join(thread value_ptr);  assert(rc == 0); // Assert that the thread was joined successfully } #endif // __MYTHREADS_h__ 
C
// mythread.h (A wrapper header file with assert // statements) #ifndef __MYTHREADS_h__ #define __MYTHREADS_h__ #include  #include    #include  void Pthread_mutex_lock(pthread_mutex_t *m) {  int rc = pthread_mutex_lock(m);  assert(rc == 0); }   void Pthread_mutex_unlock(pthread_mutex_t *m) {  int rc = pthread_mutex_unlock(m);  assert(rc == 0); }   void Pthread_create(pthread_t *thread const pthread_attr_t *attr   void *(*start_routine)(void*) void *arg) {  int rc = pthread_create(thread attr start_routine arg);  assert(rc == 0); } void Pthread_join(pthread_t thread void **value_ptr) {  int rc = pthread_join(thread value_ptr);  assert(rc == 0); } #endif // __MYTHREADS_h__ 
Python
import threading import ctypes # Function to lock a thread lock def Thread_lock(lock): lock.acquire() # Acquire the lock # No need for assert in Python acquire will raise an exception if it fails # Function to unlock a thread lock def Thread_unlock(lock): lock.release() # Release the lock # No need for assert in Python release will raise an exception if it fails # Function to create a thread def Thread_create(target args=()): thread = threading.Thread(target=target args=args) thread.start() # Start the thread # No need for assert in Python thread.start() will raise an exception if it fails # Function to join a thread def Thread_join(thread): thread.join() # Wait for the thread to finish # No need for assert in Python thread.join() will raise an exception if it fails 

Produktion: 

Thread Entered: 1  
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000