Givet en array arr[] av heltal av storlek N och en array av Q-frågor fråga[] där varje fråga är av typen [L R] som anger intervallet från index L till index R är uppgiften att hitta LCM för alla numren i intervallet för alla frågorna.
ms word snabbåtkomstverktygsfält
Exempel:
Input: arr[] = {5 7 5 2 10 12 11 17 14 1 44}
fråga[] = {{2 5} {5 10} {0 10}}
Produktion: 6015708 78540
Förklaring: I den första frågan LCM(5 2 10 12) = 60
I den andra frågan LCM(12 11 17 14 1 44) = 15708
I den senaste frågan LCM(5 7 5 2 10 12 11 17 14 1 44) = 78540Input: arr[] = {2 4 8 16} fråga[] = {{2 3} {0 1}}
Produktion: 16 4
Naivt förhållningssätt: Tillvägagångssättet bygger på följande matematiska idé:
Matematiskt LCM(l r) = LCM(arr[l] arr[l+1] . . . arr[r-1] arr[r]) och
LCM(a b) = (a*b) / GCD(ab)
Så gå igenom arrayen för varje fråga och beräkna svaret genom att använda formeln ovan för LCM.
Tidskomplexitet: O(N * Q)
Hjälputrymme: O(1)
RangeLCM-frågor med hjälp av Segment träd :
Eftersom antalet frågor kan vara stort skulle den naiva lösningen vara opraktisk. Denna tid kan reduceras
Det finns ingen uppdateringsåtgärd i det här problemet. Så vi kan initialt bygga ett segmentträd och använda det för att svara på frågorna i logaritmisk tid.
Varje nod i trädet bör lagra LCM-värdet för det specifika segmentet och vi kan använda samma formel som ovan för att kombinera segmenten.
Följ stegen nedan för att implementera idén:
- Bygg ett segmentträd från den givna arrayen.
- Gå igenom frågorna. För varje fråga:
- Hitta just det området i segmentträdet.
- Använd ovannämnda formel för att kombinera segmenten och beräkna LCM för det intervallet.
- Skriv ut svaret för det segmentet.
Nedan är implementeringen av ovanstående tillvägagångssätt.
C++// LCM of given range queries using Segment Tree #include using namespace std; #define MAX 1000 // allocate space for tree int tree[4 * MAX]; // declaring the array globally int arr[MAX]; // Function to return gcd of a and b int gcd(int a int b) { if (a == 0) return b; return gcd(b % a a); } // utility function to find lcm int lcm(int a int b) { return a * b / gcd(a b); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global void build(int node int start int end) { // If there is only one element in current subarray if (start == end) { tree[node] = arr[start]; return; } int mid = (start + end) / 2; // build left and right segments build(2 * node start mid); build(2 * node + 1 mid + 1 end); // build the parent int left_lcm = tree[2 * node]; int right_lcm = tree[2 * node + 1]; tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. int query(int node int start int end int l int r) { // Completely outside the segment returning // 1 will not affect the lcm; if (end < l || start > r) return 1; // completely inside the segment if (l <= start && r >= end) return tree[node]; // partially inside int mid = (start + end) / 2; int left_lcm = query(2 * node start mid l r); int right_lcm = query(2 * node + 1 mid + 1 end l r); return lcm(left_lcm right_lcm); } // driver function to check the above program int main() { // initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1 0 10); // Now we can answer each query efficiently // Print LCM of (2 5) cout << query(1 0 10 2 5) << endl; // Print LCM of (5 10) cout << query(1 0 10 5 10) << endl; // Print LCM of (0 10) cout << query(1 0 10 0 10) << endl; return 0; }
Java // LCM of given range queries // using Segment Tree class GFG { static final int MAX = 1000; // allocate space for tree static int tree[] = new int[4 * MAX]; // declaring the array globally static int arr[] = new int[MAX]; // Function to return gcd of a and b static int gcd(int a int b) { if (a == 0) { return b; } return gcd(b % a a); } // utility function to find lcm static int lcm(int a int b) { return a * b / gcd(a b); } // Function to build the segment tree // Node starts beginning index // of current subtree. start and end // are indexes in arr[] which is global static void build(int node int start int end) { // If there is only one element // in current subarray if (start == end) { tree[node] = arr[start]; return; } int mid = (start + end) / 2; // build left and right segments build(2 * node start mid); build(2 * node + 1 mid + 1 end); // build the parent int left_lcm = tree[2 * node]; int right_lcm = tree[2 * node + 1]; tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for // array range )l r). Node is index // of root of current segment in segment // tree (Note that indexes in segment // tree begin with 1 for simplicity). // start and end are indexes of subarray // covered by root of current segment. static int query(int node int start int end int l int r) { // Completely outside the segment returning // 1 will not affect the lcm; if (end < l || start > r) { return 1; } // completely inside the segment if (l <= start && r >= end) { return tree[node]; } // partially inside int mid = (start + end) / 2; int left_lcm = query(2 * node start mid l r); int right_lcm = query(2 * node + 1 mid + 1 end l r); return lcm(left_lcm right_lcm); } // Driver code public static void main(String[] args) { // initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1 0 10); // Now we can answer each query efficiently // Print LCM of (2 5) System.out.println(query(1 0 10 2 5)); // Print LCM of (5 10) System.out.println(query(1 0 10 5 10)); // Print LCM of (0 10) System.out.println(query(1 0 10 0 10)); } } // This code is contributed by 29AjayKumar
Python # LCM of given range queries using Segment Tree MAX = 1000 # allocate space for tree tree = [0] * (4 * MAX) # declaring the array globally arr = [0] * MAX # Function to return gcd of a and b def gcd(a: int b: int): if a == 0: return b return gcd(b % a a) # utility function to find lcm def lcm(a: int b: int): return (a * b) // gcd(a b) # Function to build the segment tree # Node starts beginning index of current subtree. # start and end are indexes in arr[] which is global def build(node: int start: int end: int): # If there is only one element # in current subarray if start == end: tree[node] = arr[start] return mid = (start + end) // 2 # build left and right segments build(2 * node start mid) build(2 * node + 1 mid + 1 end) # build the parent left_lcm = tree[2 * node] right_lcm = tree[2 * node + 1] tree[node] = lcm(left_lcm right_lcm) # Function to make queries for array range )l r). # Node is index of root of current segment in segment # tree (Note that indexes in segment tree begin with 1 # for simplicity). # start and end are indexes of subarray covered by root # of current segment. def query(node: int start: int end: int l: int r: int): # Completely outside the segment # returning 1 will not affect the lcm; if end < l or start > r: return 1 # completely inside the segment if l <= start and r >= end: return tree[node] # partially inside mid = (start + end) // 2 left_lcm = query(2 * node start mid l r) right_lcm = query(2 * node + 1 mid + 1 end l r) return lcm(left_lcm right_lcm) # Driver Code if __name__ == '__main__': # initialize the array arr[0] = 5 arr[1] = 7 arr[2] = 5 arr[3] = 2 arr[4] = 10 arr[5] = 12 arr[6] = 11 arr[7] = 17 arr[8] = 14 arr[9] = 1 arr[10] = 44 # build the segment tree build(1 0 10) # Now we can answer each query efficiently # Print LCM of (2 5) print(query(1 0 10 2 5)) # Print LCM of (5 10) print(query(1 0 10 5 10)) # Print LCM of (0 10) print(query(1 0 10 0 10)) # This code is contributed by # sanjeev2552
C# // LCM of given range queries // using Segment Tree using System; using System.Collections.Generic; class GFG { static readonly int MAX = 1000; // allocate space for tree static int[] tree = new int[4 * MAX]; // declaring the array globally static int[] arr = new int[MAX]; // Function to return gcd of a and b static int gcd(int a int b) { if (a == 0) { return b; } return gcd(b % a a); } // utility function to find lcm static int lcm(int a int b) { return a * b / gcd(a b); } // Function to build the segment tree // Node starts beginning index // of current subtree. start and end // are indexes in []arr which is global static void build(int node int start int end) { // If there is only one element // in current subarray if (start == end) { tree[node] = arr[start]; return; } int mid = (start + end) / 2; // build left and right segments build(2 * node start mid); build(2 * node + 1 mid + 1 end); // build the parent int left_lcm = tree[2 * node]; int right_lcm = tree[2 * node + 1]; tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for // array range )l r). Node is index // of root of current segment in segment // tree (Note that indexes in segment // tree begin with 1 for simplicity). // start and end are indexes of subarray // covered by root of current segment. static int query(int node int start int end int l int r) { // Completely outside the segment // returning 1 will not affect the lcm; if (end < l || start > r) { return 1; } // completely inside the segment if (l <= start && r >= end) { return tree[node]; } // partially inside int mid = (start + end) / 2; int left_lcm = query(2 * node start mid l r); int right_lcm = query(2 * node + 1 mid + 1 end l r); return lcm(left_lcm right_lcm); } // Driver code public static void Main(String[] args) { // initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1 0 10); // Now we can answer each query efficiently // Print LCM of (2 5) Console.WriteLine(query(1 0 10 2 5)); // Print LCM of (5 10) Console.WriteLine(query(1 0 10 5 10)); // Print LCM of (0 10) Console.WriteLine(query(1 0 10 0 10)); } } // This code is contributed by Rajput-Ji
JavaScript <script> // LCM of given range queries using Segment Tree const MAX = 1000 // allocate space for tree var tree = new Array(4*MAX); // declaring the array globally var arr = new Array(MAX); // Function to return gcd of a and b function gcd(a b) { if (a == 0) return b; return gcd(b%a a); } //utility function to find lcm function lcm(a b) { return Math.floor(a*b/gcd(ab)); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global function build(node start end) { // If there is only one element in current subarray if (start==end) { tree[node] = arr[start]; return; } let mid = Math.floor((start+end)/2); // build left and right segments build(2*node start mid); build(2*node+1 mid+1 end); // build the parent let left_lcm = tree[2*node]; let right_lcm = tree[2*node+1]; tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. function query(node start end l r) { // Completely outside the segment returning // 1 will not affect the lcm; if (end<l || start>r) return 1; // completely inside the segment if (l<=start && r>=end) return tree[node]; // partially inside let mid = Math.floor((start+end)/2); let left_lcm = query(2*node start mid l r); let right_lcm = query(2*node+1 mid+1 end l r); return lcm(left_lcm right_lcm); } //driver function to check the above program //initialize the array arr[0] = 5; arr[1] = 7; arr[2] = 5; arr[3] = 2; arr[4] = 10; arr[5] = 12; arr[6] = 11; arr[7] = 17; arr[8] = 14; arr[9] = 1; arr[10] = 44; // build the segment tree build(1 0 10); // Now we can answer each query efficiently // Print LCM of (2 5) document.write(query(1 0 10 2 5) +'
'); // Print LCM of (5 10) document.write(query(1 0 10 5 10) + '
'); // Print LCM of (0 10) document.write(query(1 0 10 0 10) + '
'); // This code is contributed by Manoj. </script>
Produktion
60 15708 78540
Tidskomplexitet: O(Log N * Log n) där N är antalet element i matrisen. Det andra loggen n anger den tid som krävs för att hitta LCM. Denna tidskomplexitet är för varje fråga. Den totala tidskomplexiteten är O(N + Q*Log N*log n) detta beror på att O(N) tid krävs för att bygga trädet och sedan svara på frågorna.
Hjälputrymme: O(N) där N är antalet element i arrayen. Detta utrymme krävs för att lagra segmentträdet.
Relaterat ämne: Segmentträd
katrina kaif
Tillvägagångssätt #2: Använda matematik
Vi definierar först en hjälpfunktion lcm() för att beräkna den minsta gemensamma multipeln av två tal. För varje fråga itererar vi sedan genom subarrayen av arr som definieras av frågeintervallet och beräknar LCM med hjälp av lcm()-funktionen. LCM-värdet lagras i en lista som returneras som slutresultat.
Segmentträd
string.replaceall java
Tillvägagångssätt #2: Använda matematik
Algoritm
Segmentträd
Tillvägagångssätt #2: Använda matematik
1. Definiera en hjälpfunktion lcm(a b) för att beräkna den minsta gemensamma multipeln av två tal.
2. Definiera en funktion range_lcm_queries(arr queries) som tar en array arr och en lista med frågeintervallsfrågor som indata.
3. Skapa en tom lista med resultat för att lagra LCM-värdena för varje fråga.
4. För varje fråga i frågor extrahera vänster och höger index l och r.
5. Ställ in lcm_val till värdet arr[l].
6. För varje index i i intervallet l+1 till r uppdatera lcm_val till att vara LCM för lcm_val och arr[i] med hjälp av lcm()-funktionen.
7. Lägg till lcm_val till resultatlistan.
8. Returnera resultatlistan.
Tillvägagångssätt #2: Använda matematik
C++ Java #include
Python /*package whatever //do not write package name here */ import java.util.ArrayList; import java.util.List; public class GFG { public static int gcd(int a int b) { if (b == 0) return a; return gcd(b a % b); } public static int lcm(int a int b) { return a * b / gcd(a b); } public static List<Integer> rangeLcmQueries(List<Integer> arr List<int[]> queries) { List<Integer> results = new ArrayList<>(); for (int[] query : queries) { int l = query[0]; int r = query[1]; int lcmVal = arr.get(l); for (int i = l + 1; i <= r; i++) { lcmVal = lcm(lcmVal arr.get(i)); } results.add(lcmVal); } return results; } public static void main(String[] args) { List<Integer> arr = List.of(5 7 5 2 10 12 11 17 14 1 44); List<int[]> queries = List.of(new int[]{2 5} new int[]{5 10} new int[]{0 10}); List<Integer> results = rangeLcmQueries(arr queries); for (int result : results) { System.out.print(result + ' '); } System.out.println(); } }
C# from math import gcd def lcm(a b): return a*b // gcd(a b) def range_lcm_queries(arr queries): results = [] for query in queries: l r = query lcm_val = arr[l] for i in range(l+1 r+1): lcm_val = lcm(lcm_val arr[i]) results.append(lcm_val) return results # example usage arr = [5 7 5 2 10 12 11 17 14 1 44] queries = [(2 5) (5 10) (0 10)] print(range_lcm_queries(arr queries)) # output: [60 15708 78540]
JavaScript using System; using System.Collections.Generic; class GFG { // Function to calculate the greatest common divisor (GCD) // using Euclidean algorithm static int GCD(int a int b) { if (b == 0) return a; return GCD(b a % b); } // Function to calculate the least common multiple (LCM) // using GCD static int LCM(int a int b) { return a * b / GCD(a b); } static List<int> RangeLcmQueries(List<int> arr List<Tuple<int int>> queries) { List<int> results = new List<int>(); foreach (var query in queries) { int l = query.Item1; int r = query.Item2; int lcmVal = arr[l]; for (int i = l + 1; i <= r; i++) { lcmVal = LCM(lcmVal arr[i]); } results.Add(lcmVal); } return results; } static void Main() { List<int> arr = new List<int> { 5 7 5 2 10 12 11 17 14 1 44 }; List<Tuple<int int>> queries = new List<Tuple<int int>> { Tuple.Create(2 5) Tuple.Create(5 10) Tuple.Create(0 10) }; List<int> results = RangeLcmQueries(arr queries); foreach (var result in results) { Console.Write(result + ' '); } Console.WriteLine(); } }
// JavaScript Program for the above approach // function to find out gcd function gcd(a b) { if (b === 0) { return a; } return gcd(b a % b); } // function to find out lcm function lcm(a b) { return (a * b) / gcd(a b); } function rangeLcmQueries(arr queries) { const results = []; for (const query of queries) { const l = query[0]; const r = query[1]; let lcmVal = arr[l]; for (let i = l + 1; i <= r; i++) { lcmVal = lcm(lcmVal arr[i]); } results.push(lcmVal); } return results; } // Driver code to test above function const arr = [5 7 5 2 10 12 11 17 14 1 44]; const queries = [[2 5] [5 10] [0 10]]; const results = rangeLcmQueries(arr queries); for (const result of results) { console.log(result + ' '); } console.log(); // THIS CODE IS CONTRIBUTED BY PIYUSH AGARWAL
Produktion
[60 15708 78540]
Tidskomplexitet: O(log(min(ab))). För varje frågeområde itererar vi genom en undermatris med storleken O(n) där n är längden på arr. Därför är tidskomplexiteten för den övergripande funktionen O(qn log(min(a_i))) där q är antalet frågor och a_i är det i:te elementet i arr.
Utrymmes komplexitet: O(1) eftersom vi bara lagrar ett fåtal heltal åt gången. Utrymmet som används av indata arr och frågor beaktas inte.