Givet N modulära ekvationer: A ? x1mod(m1) . . A ? xnmod(mn) Hitta x i ekvationen A ? xmod(m1*m2*m3..*mn) där miär primtal eller en potens av ett primtal och i tar värden från 1 till n. Ingången ges som två arrayer, den första är en array som innehåller värden för varje xioch den andra matrisen innehåller uppsättningen värden för varje primtal. miMata ut ett heltal för värdet av x i den slutliga ekvationen.
Exempel:
Consider the two equations A ? 2mod(3) A ? 3mod(5) Input : 2 3 3 5 Output : 8 Consider the four equations A ? 3mod(4) A ? 4mod(7) A ? 1mod(9) (32) A ? 0mod(11) Input : 3 4 1 0 4 7 9 11 Output : 1243
Förklaring: Vi strävar efter att lösa dessa ekvationer två åt gången. Vi tar de två första ekvationerna kombinera det och använder det resultatet för att kombinera med den tredje ekvationen och så vidare. Processen att kombinera två ekvationer förklaras enligt följande genom att ta exempel 2 som referens:
- A ? 3mod(4) och A ? 4mod(7) är de två ekvationerna som vi först förses med. Låt den resulterande ekvationen vara något A? xmod(m1* m2).
- Ages av m1'*m1* x+ m'*m* x1där m1' = modulär invers av m1modul moch m' = modulär invers av mmodul m1
- Vi kan beräkna modulär invers med utökad euklidisk algoritm.
- Vi hittar xatt vara Amod (m1* m2)
- Vi får vår nya ekvation att vara A ? 11mod(28) där A är 95
- Vi försöker nu kombinera detta med ekvation 3 och med en liknande metod får vi A ? 235mod(252) där A = 2503
- Och slutligen om vi kombinerar detta med ekvation 4 får vi A ? 1243mod(2772) där A = 59455 och x = 1243
Vi observerar att 2772 med rätta är lika med 4 * 7 * 9 * 11. Vi har alltså hittat värdet på x för den slutliga ekvationen. Du kan hänvisa till Utökad euklidisk algoritm och Modulär multiplikativ invers för extra information om dessa ämnen.
C++// C++ program to combine modular equations // using Chinese Remainder Theorem #include using namespace std; // function that implements Extended euclidean // algorithm vector<int> extended_euclidean(int aint b){ if(a == 0){ vector<int> temp; temp.push_back(b); temp.push_back(0); temp.push_back(1); return temp; } else{ vector<int> temp(3); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } vector<int> temp; return temp; } // modular inverse driver function int modinv(int aint m){ vector<int> temp(3); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. int ans = x - (floor(x/(float)m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations int crt(vector<int> &mvector<int> & x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 int var1 = (modinv(m[1]m[0])); int var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; int temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.erase(x.begin()); x.erase(x.begin()); x.insert(x.begin() temp1%temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.erase(m.begin()); m.erase(m.begin()); m.insert(m.begin() temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.size()== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment int main(){ vector<int> m = {4 7 9 11}; vector<int> x = {3 4 1 0}; cout << crt(m x) << endl; return 0; } // The code is contributed by Gautam goel (gautamgoe962)
Java // Java program to implement the Chinese Remainder Theorem import java.util.ArrayList; import java.math.BigInteger; public class ChineseRemainderTheorem { // Function to calculate the modular inverse of a and m public static BigInteger modinv(BigInteger a BigInteger m) { BigInteger m0 = m; BigInteger y = BigInteger.ZERO; BigInteger x = BigInteger.ONE; if (m.equals(BigInteger.ONE)) return BigInteger.ZERO; while (a.compareTo(BigInteger.ONE) == 1) { BigInteger q = a.divide(m); BigInteger t = m; m = a.mod(m); a = t; t = y; y = x.subtract(q.multiply(y)); x = t; } if (x.compareTo(BigInteger.ZERO) == -1) x = x.add(m0); return x; } // Function to implement the Chinese Remainder Theorem public static BigInteger crt(ArrayList<BigInteger> m ArrayList<BigInteger> x) { BigInteger M = BigInteger.ONE; for (int i = 0; i < m.size(); i++) { M = M.multiply(m.get(i)); } BigInteger result = BigInteger.ZERO; for (int i = 0; i < m.size(); i++) { BigInteger Mi = M.divide(m.get(i)); BigInteger MiInv = modinv(Mi m.get(i)); result = result.add(x.get(i).multiply(Mi).multiply(MiInv)); } return result.mod(M); } public static void main(String[] args) { ArrayList<BigInteger> m = new ArrayList<>(); ArrayList<BigInteger> x = new ArrayList<>(); m.add(BigInteger.valueOf(4)); m.add(BigInteger.valueOf(7)); m.add(BigInteger.valueOf(9)); m.add(BigInteger.valueOf(11)); x.add(BigInteger.valueOf(3)); x.add(BigInteger.valueOf(4)); x.add(BigInteger.valueOf(1)); x.add(BigInteger.valueOf(0)); System.out.println(crt(m x)); } } // This code is contributed by Vikram_Shirsat
Python # Python 2.x program to combine modular equations # using Chinese Remainder Theorem # function that implements Extended euclidean # algorithm def extended_euclidean(a b): if a == 0: return (b 0 1) else: g y x = extended_euclidean(b % a a) return (g x - (b // a) * y y) # modular inverse driver function def modinv(a m): g x y = extended_euclidean(a m) return x % m # function implementing Chinese remainder theorem # list m contains all the modulii # list x contains the remainders of the equations def crt(m x): # We run this loop while the list of # remainders has length greater than 1 while True: # temp1 will contain the new value # of A. which is calculated according # to the equation m1' * m1 * x0 + m0' # * m0 * x1 temp1 = modinv(m[1]m[0]) * x[0] * m[1] + modinv(m[0]m[1]) * x[1] * m[0] # temp2 contains the value of the modulus # in the new equation which will be the # product of the modulii of the two # equations that we are combining temp2 = m[0] * m[1] # we then remove the first two elements # from the list of remainders and replace # it with the remainder value which will # be temp1 % temp2 x.remove(x[0]) x.remove(x[0]) x = [temp1 % temp2] + x # we then remove the first two values from # the list of modulii as we no longer require # them and simply replace them with the new # modulii that we calculated m.remove(m[0]) m.remove(m[0]) m = [temp2] + m # once the list has only one element left # we can break as it will only contain # the value of our final remainder if len(x) == 1: break # returns the remainder of the final equation return x[0] # driver segment m = [4 7 9 11] x = [3 4 1 0] print crt(m x)
C# using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to combine modular equations // using Chinese Remainder Theorem class HelloWorld { // function that implements Extended euclidean // algorithm public static List<int> extended_euclidean(int aint b){ if(a == 0){ List<int> temp = new List<int>(); temp.Add(b); temp.Add(0); temp.Add(1); return temp; } else{ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } List<int> temp1 = new List<int>(); return temp1; } // modular inverse driver function public static double modinv(int aint m){ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. double val = Math.Floor(((double)x/(double)m)); double ans = x - (val * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations public static int crt(List<int> mList<int> x) { // We run this loop while the list of // remainders has length greater than 1 while(true) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 double var1 = (modinv(m[1]m[0])); double var2 = (modinv(m[0]m[1])); // cout << var1 << ' ' << var2 << endl; double temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.RemoveAt(0); x.RemoveAt(0); x.Insert(0 (int)temp1%(int)temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.RemoveAt(0); m.RemoveAt(0); m.Insert(0 temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.Count == 1){ break; } } // returns the remainder of the final equation return x[0]; } static void Main() { List<int> m = new List<int>(){ 4 7 9 11 }; List<int> x = new List<int> (){ 3 4 1 0 }; Console.WriteLine(crt(m x)); } } // The code is contributed by Nidhi goel.
JavaScript // JavaScript program to combine modular equations // using Chinese Remainder Theorem // function that implements Extended euclidean // algorithm function extended_euclidean(a b){ if(a == 0){ let temp = [b 0 1]; return temp; } else{ let temp= extended_euclidean(b % a a); let g = temp[0]; let y = temp[1]; let x = temp[2]; temp[0] = g; temp[1] = x - (Math.floor(b/a) * y); temp[2] = y; return temp; } let temp; return temp; } // modular inverse driver function function modinv(a m){ let temp = extended_euclidean(a m); let g = temp[0]; let x = temp[1]; let y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. let ans = x - (Math.floor(x/m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations function crt(m x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 let var1 = (modinv(m[1]m[0])); let var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; let temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining let temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.shift(); x.shift(); x.unshift(temp1 % temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.shift(); m.shift(); m.unshift(temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.length== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment let m = [4 7 9 11]; let x = [3 4 1 0]; console.log(crt(m x)); // The code is contributed by phasing17
Produktion:
1243
Tidskomplexitet: O(l) där l är storleken på restlistan.
Rymdkomplexitet: O(1) eftersom vi inte använder något extra utrymme.
Denna sats och algoritm har utmärkta tillämpningar. En mycket användbar applikation är att beräknanCr% m där m inte är ett primtal och Lucas teorem kan inte tillämpas direkt. I ett sådant fall kan vi beräkna primfaktorerna för m och använda primfaktorerna en efter en som en modul i vårnCr% m-ekvation som vi kan beräkna med Lucas-satsen och sedan kombinera de resulterande ekvationerna med den ovan visade kinesiska restsatsen.
Skapa frågesport